ФИЗИКА

Э.А. Керимов, С.Н. Мусаева, М.Р. Магеррамова

Параметры приемных устройств на шоттки-матрицах

В работе экспериментально определена зависимость сигнала чувствительного элемента фотодиода от контрастной температуры объекта по отношению к 300 °К фону для 1/2 оптической системы и среднеквадратичного шума от числа накопленных электронов. Для повышения качества изображения применяется специальное электронное устройство, устраняющее аддитивную составляющую геометрического шума. При этом в качестве опорного кадра используется усреднённый по 16 последовательным кадрам фоновый сигнал.

Ключевые слова: диод Шоттки; детектор; фоточувствитель; частота Найквиста; двухмерная матрица; квантовой эффект.

работе исследована зависимость отношения сигнал / шум для одномерной линейки из 256 фоточувствительных элементов на IrSiдиодах от интенсивности излучения абсолютно чёрного тела при температуре 500 °К в спектральной области 3,4 ÷ 4,2 мкм; время интегрирования сигнала — 35 мс. Облучение осуществляли через поверхность кремния. Так как поверхность не просветляется, потери на отражение достигали 30 %. Получено значение отношения сигнал / шум, равное единице, при облучённости 4,5 · 10⁻⁷ Вт · см⁻², что соответствует предельной чувствительности отдельного элемента, равной 8 · 10⁻¹² Вт. Сигнал линейно возрастал с облучённостью, вплоть до значений 10⁻³ Вт см⁻². Значение динамического диапазона составляло $5 \cdot 10^3$, рабочая температура чувствительных элементов была равна 80 °К. Неравномерность чувствительности элементов в линейке, равная 0,55 %, определялась лишь точностью соблюдения геометрических размеров чувствительных элементов. Модуляционная передаточная функция (МПФ), полученная на матрице 25 × 50 элементов, приведена на рисунке 1. Значение МПФ на частоте Найквиста составляет 60 %.

Чувствительность двухмерной матрицы из 64 × 64 элементов на IrSi-диодах с МОП-ключами определяли при температуре 77 °К и времени накопления — 19 мс. Инжектированный сигнальный заряд измеряли внешним предусилителем, по причине чего основным источником шума были наводки на коаксиальный кабель, связывающий вход матрицы с предусилителем.

В этих условиях чувствительность матрицы по отношению к разности значений облучённости фона при 300 °К и АЧТ при 500 °К составляла 3.5×10^7 B/Bt, при среднеквадратичной величине шума 5 mB и динамическом диапазоне 48 дБ. Была измерена также чувствительность по отношению к разности температур АЧТ. При температуре фона 300 °К чувствительность составляла 10,5 mB/K, что для указанного выше среднеквадратического значения шума соответствует эквивалентной шуму разности температур 0,48 °К. Испытания показали, что матрица не имеет неработающих элементов, среднеквадратичная величина разброса чувствительности элементов составляет 1,8 % и определяется в основном экранированием потока входным окном. При использовании этой матрицы в оптической системе с диаметром входного зрачка 50 мм и относительным отверстием f/1 получено тепловое изображение малоконтрастных объектов в окне прозрачности атмосферы 3-5 мкм. При облучении фоточувствительной структуры со стороны слоя силицида можно получать изображения объектов в спектральном интервале 0,4 ÷ 5,2 мкм. В диапазоне длин волн до 1,1 мкм (граничная длина волны кремния), механизмом обнаружения излучения является собственное поглощение фотонов в кремнии и разделение фотоносителей полем перехода шоттки-диода; на длине волны больше 1,1 мкм при поглощении излучения в слое силицида происходит внутренняя фотоэмиссия фотоносителей из металла в полупроводник. Если толщина слоя силицида меньше 10 нм, то шоттки-матрица в видимом и ближнем ИК-диапазонах по квантовой эффективности сравнима с кремниевыми твёрдотельными преобразователями изображения.

Была проведена экспериментальная оценка параметров приёмного устройства на основе двухмерной матрицы (32×63 элемента) из IrSi шоттки-диодов для оптической системы с относительным отверстием f/2,0, при частоте кадров 60 Гц и рабочей температуре 80 °K. При этой температуре за счёт темнового тока ячейка

накапливала за время кадра ≈10⁹ электронов. Среднеквадратичная величина шума ячейки в матрице (без учёта геометрического шума) составила ≈1,3 · 10³ электронов, при среднеквадратичном шуме считывающего ПЗС-регистра, 180÷250 электронов на 1 ячейку. Абсолютная чувствительность фотоприёмного устройства достигала 4 · 10⁴ электронов на 1 °К при небольших изменениях температуры относительно фона 300 °K, что для приведённой величины среднеквадратичного шума соответствует эквивалентной шуму разности температур 0,033 °К. Такая высокая пороговая чувствительность, однако, не была реализована в приёмном устройстве из-за наличия геометрического шума, который был вызван не разбросом чувствительности отдельных элементов (среднеквадратичное значение её разброса составляло от 0,2 до 0,5 %), а по причине абсолютного значения их темнового тока (заряда). Так как этот геометрический шум — величина аддитивная, его можно заметно снизить, вычитая из сигнала наблюдаемых кадров сигнал некоторого опорного кадра. Однако при этом временной шум опорного кадра преобразуется в пространственный, который и ограничивает пороговые характеристики устройства. При аддитивной коррекции вариаций темнового тока с использованием сигнала только одного опорного кадра минимально разрешаемая разность температур на частоте, равной 1/5 частоты Найквиста, составила менее 0,1 °К. Утверждается, что при использовании в качестве сигнала опорного кадра, усреднённого по нескольким опорным кадрам, величина МРТ может быть улучшена в 2-3 раза. Динамический диапазон приёмного устройства составил 70 дБ.

Близкие характеристики имеет и матрица размером 64×128 элементов. При частоте кадров 60 Гц, с использованием германиевой оптической системы, имеющей входной участок диаметром 175 мм и относительное отверстие f/2,35, чувствительность матрицы составила 6,5 mB/K (или 1,3 \cdot 10⁴ электронов на 1 °K) для небольших температурных приращений относительно фона 300 °K. Выходное напряжение матрицы при сигнале от фона 300 °K, равно 235 mB, пиковое значение шума (исключая геометрический), — 1,75 mB (0,29 mB — среднеквадратичное значение); соответственно, эквивалентная шуму разность температур составляет 0,045 °K. Изготовленное на основе этой матрицы приёмное устройство имеет небольшие размеры ($35 \times 12,5$ см), высокую надёжность, относительно низкую стоимость и обеспечивает разрешение разности температур 0,1 °K, что достаточно для большинства промышленных областей применения. Узел оптикомеханического сканирования отсутствует. Рассматриваемое приёмное устройство может использоваться со специальным блоком, обеспечивающим преобразование выходного напряжения шоттки-матрицы в телевизионный стандарт.

На основе IrSi-матрицы из 160 × 244 элементов разработана тепловизионная камера. Матрица, смонтированная в 32-выводном керамическом корпусе, устанавливается в Дьюар и охлаждается до температуры 77 °К жидким азотом. Для повышения качества изображения применяется специальное электронное устройство, устраняющее аддитивную составляющую геометрического шума. При этом в качестве опорного кадра используется усреднённый по 16 последовательным кадрам фоновый сигнал. Частота кадров — 30 Гц. Каждый кадр состоит из двух чересстрочных полей по 160 × 122 элементов разложения. Экспериментально определены зависимости сигнала чувствительного элемента от контрастной температуры объекта по отношению к 300 °K фону для 1/2 оптической системы (рис. 2) и среднеквадратичного шума от числа накопленных электронов (рис. 3).

Рис. 2. Зависимость выходного напряжения шоттки-матрицы из 160 × 244 PtSi-элементов разложения от контрастной температуры относительно 300 °K фона

Рис. 3. Зависимость среднеквадратичного шума шоттки-диода от числа накопленных элементов:

1 — экспериментальная зависимость; 2 — теоретический предел для дробового шума

Температурная чувствительность камеры составляла 2×10^4 электронов на 1 °К. Было видно, что уже при числе накопленных электронов $\approx 10^4$ шум матрицы определяется флуктуациями этой величины. В условиях измерения шума матрицы (охлаждённая диафрагма соответствует апертуре f/2,5), темновой заряд составляет 1,2 \cdot 10³ электронов на один элемент при длительности кадра 1/30 с.

Пространственная неравномерность сигнала разных элементов матрицы без поправки на геометрический шум, вызванный изменением величины темнового заряда ячеек матрицы при облучении 300 °К фоном, равна 1–2 % после введения поправки (с усреднением по 16 кадрам опорного кадра) меньше 0,18 %, что составляет менее половины временного шума.

Литература

1. Ибрагимов Г.Б., Керимов Э.А. Фотоэлектрические свойства фотодиодов на основе силицида металла — кремний // Журнал «Известия». 2014. Т. 17. № 1. С. 42–47.

2. *Керимов Э.А.* Шумы фотоприемных устройств на основе диодов Шоттки // Электронный научный журнал «ФИЗ-МАТ». 2014. Вып. 1 (15). С. 3–8.

3. Ибрагимов Г.Б., Керимов Э.А. Фотоэлектрические свойства фотодиодов // Вестник МГПУ. Серия «Естественные науки». 2014. № 2 (14). С. 9–17.

4. *Киес Р.Д.* Фотоприемники видимого и ИК диапазонов. М.: Радио и связь, 1985. 328 с.

5. *Kepumos Э.A.* Investigation of change of the height of potential barrier of the contact IrSi-Si// The Recent Trends in Science and Tecnology Management. 09–10 May 2013. London. P. 341–345.

Literatura

1. *Ibragimov G.B., Kerimov E'.A.* Fotoe'lektricheskie svojstva fotodiodov na osnove silicida metalla — kremnij // Zhurnal «Izvestiya». 2014. T. 17. № 1. S. 42–47.

2. *Kerimov E'.A.* Shumy' fotopriemny'x ustrojstv na osnove diodov Shottki // E'lektronny'j nauchny'j zhurnal «FIZ-MAT». 2014. Vy'p. 1 (15). S. 3–8.

3. *Ibragimov G.B., Kerimov E'.A.* Fotoe'lektricheskie svojstva fotodiodov // Vestnik MGPU. Seriya «Estestvenny'e nauki». 2014. № 2 (14). S. 9–17.

4. Kies R.D. Fotopriemniki vidimogo i IK diapazonov. M.: Radio i svyaz', 1985. 328 s.

5. *Kerimov E'.A.* Investigation of change of the height of potential barrier of the contact IrSi – Si // The Recent Trends in Science and Tecnology Management. 09-10 May 2013. London. P. 341–345.

E.A. Kerimov, S.N. Musaeva, M.R. Magerramova

Parameters of Receivers on Schottky Matrices

The authors experimentally determined dependence of the sensor signal of the photodiode from contrast temperature of the object in the relation to the 3000 °K background for 1/2 of an optical system and the rms noise, from the number of accumulated electrons. For higher image quality they use a special electronic device, eliminating the additive component of geometric noise. Thus, as a reference frame they used the background signal averaged over 16 consecutive frames.

Keywords: Schottky diodes; detector; photosensitive; Nyquist frequency; two-dimensional matrix; quantum effect.