химия

Салех М. Мокбель, Е.Н. Колосов, И.И. Михаленко

Электрохимическое окисление 4- и 2,4-хлорфенолов на анодах SnO₂, IrO₂/ Ti

В работе исследована активность электродов $\mathrm{SnO_2}/\mathrm{Ti}$ и $\mathrm{IrO_2}/\mathrm{Ti}$ в потенцио-динамическом и гальваностатическом анодном окислении 4-хлорфенола (4XФ) и 2,4-дихлорфенола (2,4ДХФ) в кислом и в щелочном фоновом растворе. Установлено, что формальный кинетический порядок превращения 4ХФ и 2,4ДХФ различный — первый у 4ХФ и меньше первого у 2,4ДХФ. Дробный порядок $n=\frac{1}{2}$ объяснен адсорбцией и участием в реакции димеров. Константы скорости окисления на металлоксидных анодах больше, чем на аноде Pt / Ti. Электролиз 2,4ДХФ в кислой среде, контролируемый по УФ спектрам, протекает первые 4 часа по псевдонулевому порядку с одинаковой скоростью для $\mathrm{IrO_2}/\mathrm{Ti}$ и $\mathrm{SnO_2}/\mathrm{Ti}$. При длительности 5—8 ч. активность $\mathrm{IrO_2}/\mathrm{Ti}$ была в два раза выше активности $\mathrm{SnO_2}/\mathrm{Ti}$. Анализ электрокатализаторов методом РФЭС показал, что после электролиза на поверхности $\mathrm{IrO_2}/\mathrm{Ti}$ и $\mathrm{SnO_2}/\mathrm{Ti}$. Ораз ниже по сравнению с Pt/Ti .

Ключевые слова: хлорфенолы; анодное окисление; титановая фольга; оксиды олова и иридия; платина.

лорсодержащие ароматические соединения, входящие в состав пестицидов, относятся к группе наиболее токсичных органических загрязнителей водной среды. Для них характерна медленная биологическая деградация, что способствует накоплению этих веществ в почве. Альтернативой микробиологическим технологиям и простым химическим воздействиям с целью нейтрализации хлорфенолов является недорогой и экологически чистый метод электрохимического окисления [13]. Набор материалов для электрокатализаторов анодного окисления органических веществ большой. Традиционными являются платиносодержащие аноды [8], но разработка активных и стабильных электрокатализаторов «без платины» не прекращается. Хорошие характеристики показывают оксиды, нанесенные на металлическую подложку [3–7]. Данная работа является продолжением наших исследований электрохимической активности катализаторов с Ті-подложкой в окислении хлорфенолов [3; 4].

При анодном окислении важную роль играют гидроксил радикалы 'OH [10], образующиеся на анодах с высоким перенапряжением кислорода $H_2O = OH + H^+ + e^-$. Они являются сильными окислителями и реагируют с органическими соединениями, вызывая реакции дегидрирования и/или гидратации.

Под воздействием 'ОН и ионов ОН⁻ в кислой среде при электроокислении фенола быстро образуются гидрохинон, бензохинон и, более медленно, карбоновые кислоты (щавелевая, малеиновая, фумаровая) вследствие разрушения бензольного кольца.

Цель работы — методом циклической вольтамперометрии исследовать активность электрокатализаторов SnO_2 / Ti и IrO_2 / Ti в окислении монохлорфенола и дихлорфенола на основании концентрационных и температурных зависимостей тока окисления в фоновом растворе кислоты и щелочи, а также кинетику электролиза в гальваностатическом режиме, а результаты сопоставить с данными, полученными для Pt / Ti-анода в тех же условиях.

Методика эксперимента

Гладкая Ті-фольга (99,9 %) толщиной 0,1 мм с видимой поверхностью 2 см² (две стороны) служила подложкой. За основу методики нанесения оксидов на титановую фольгу были выбраны условия и процедуры, использованные в работах [7; 10]. Перед нанесением оксидной фазы её выдерживали в ацетоне и обрабатывали кипящим 15-процентным раствором щавелевой кислоты.

 SnO_2/Ti . Титановую фольгу обрабатывали раствором хлорида олова (0,05 г $SnCl_2$ в 50 мл этанола), высушивали на воздухе в течение 20 мин. при 20 °C, выдерживали на воздухе 15 мин. при 200 °C. Эту процедуру повторили десять раз, затем образец отжигался 1,5 часа в муфельной печи при 500 °C.

IrO₂/**Ti.** Предварительно фольгу титана выдерживали в водном 0,0025 M растворе хлорида иридия (0,5 г IrCl₃ · 6H₂O в 670 мл деионизированной воды, рН 1,8). Затем в этот раствор при постоянном перемешивании в течение 6 часов в автоматическом режиме добавляли каждые 3 мин. по 0,01 мл раствора 0,01 M LiOH до достижения рН 12 и молярного соотношения [LiOH] / [IrCl₃] = 3. В этом растворе обрабатывали Тi-фольгу, затем её сушили на воздухе 20 мин. при 20 °C и 15 мин. выдерживали в печи при 200 °C. Процедуру повторяли десять раз, после чего образец отжигался 1,5 часа при 500 °C.

Образец Pt / Ті был получен электроосаждением платины на Ті-фольгу из раствора $K_2[Pt(NO_3)_4]$ при следующих условиях: длительность платинирования — 3 часа, ток — 40 мА, потенциал — 2,2 В, коэффициент шероховатости поверхности Pt / Ті анода (отношение истинной поверхности к видимой), рассчитанный по площади пика водорода I-E кривых, равен F=35. Содержание платины составляло 15 % от массы титана, что была определено методом рентгенофлуоресцентной спектроскопии (спектрометр Clever-31).

Потенциодинамические измерения с регистрацией I-E зависимостей в интервале потенциалов от -0.1 до +2.5 В проводили в трехэлектродной ячей-ке с разделенными катодным и анодным пространствами, в которой электродом сравнения служил хлорсеребряный электрод, вторым электродом была платиновая сетка (4 см²), а рабочим электродом SnO_2/Ti , IrO_2/Ti или Pt/Ti. I-E кривые

регистрировали для фонового раствора (0,5 М $\rm H_2SO_4$ или 1 М NaOH), а затем для тех же растворов, содержащих 2,4-дихлорфенол и 4-хлорфенол, в условиях барботирования раствора гелием. В первой серии опытов варьировали начальную концентрацию хлорорганического вещества при комнатной температуре (25 °C), во второй серии при постоянной концентрации хлорфенола в реакционном растворе ($C_0 = 0.03$ мМ) варьировали температуру в интервале 20–43 °C. Скорость развертки потенциала во всех опытах выбрана V = 100 мВ/с на основании определения зависимости тока в пике окисления $I_{\rm ox}$ от V в интервале значений V от 30 до 100 мВ. Линейность между $I_{\rm ox}$ и квадратным корнем V, соответствующая диффузионной модели метода ЦВА, отсутствует при V > 60 мВ/с, что указывает на переход реакции из диффузионной в кинетическую область. В полулогарифмических координатах $InI_{\rm ox} - V^{1/2}$ были получены линейные зависимости для всех электродов и фоновых растворов, подтверждающие основной вклад гетерогенно-каталитических процессов в окислении изученных веществ при скоростях развертки потенциала выше 60 мВ/с.

Гальваностатический режим. Длительный электролиз проводили с кислым раствором 2,4 ДХФ ($C_0 = 0.03$ мМ) при комнатной температуре (ток — 26 мА, потенциал — 2,9 В). Для контроля за изменением состава реакционной смеси применяли УФ-спектроскопию. По ходу электролиза отбирали по 0,5 мл реакционной смеси, разбавляли её 4,5 мл фонового раствора и регистрировали спектры поглощения на спектрофотометре СК-101. В конце электролиза методом рентгенофотоэлектронной спектроскопии исследовали элементный состав поверхностного слоя анодов с использованием спектрометра Kratos Axis Ultra DLD (излучение AlK α с нейтрализатором, энергия пропускания — 160 эВ для записи обзорного спектра и 40 эВ для записи спектра высокого разрешения).

Результаты и их обсуждение

На рисунке 1 представлены типичные потенциодинамические кривые.

Видно, что окисление 2,4 ДХФ (a, δ) на обоих анодах начинается при потенциалах выше 1,4 В с пиком тока окисления I_{ox} при 2,4 В, значение которого возрастает при повышении концентрации вещества или температуры. В щелочной среде потенциалы окисления сдвигаются в сторону меньших значений. Сравнение активности анодов проводили по току максимального тика окисления I_{ox} за вычетом тока фона I_{ox} при данном потенциале. Значение разности $I_{ox} = I_{ox} - I_{ox}$ является скоростью анодного гетерогенно-каталитического окисления вещества.

Влияние концентрации. Зависимости тока окисления от начальной концентрации $4 \text{ X}\Phi$ (см. рис. 2 a) были линейными для всех катализаторов.

Тангенс угла наклона прямых линий $I_{ox} = f(C_0)$ — это значение эффективной константы скорости реакции первого порядка для сложного гетерогенного процесса электроокисления. Значения K_1 приведены в таблице 1. Видно, что у образцов SnO_2 / Ті и IrO_2 / Ті они выше в 1,5 раза по сравнению с платинированным анодом. У всех катализаторов константы K_1 в кислой среде на 15-20 % больше, чем в щелочной.

Рис. 1. I-E зависимости окисления 2,4-дихлорфенола в кислом растворе на аноде $\mathrm{SnO_2}/\mathrm{Ti}~(a)$ и аноде $\mathrm{IrO_2}/\mathrm{Ti}~(\delta)$ и окисления 4-дихлорфенола в щелочном растворе на $\mathrm{SnO_2}/\mathrm{Ti}~(s)$ при возрастающих концентрациях вещества (линии 2–7 на рис. a, δ, s), c — окисление 4-хлорфенола на $\mathrm{IrO_2}/\mathrm{Ti}$ в растворе щелочи при разных температурах и $C_0 = 0.03$ мМ. Черные линии (1) — фоновый раствор, комнатная температура

В случае 2,4-дихлорфенола зависимости $I_{ox} = f(C_0)$ нелинейные (см. рис. 2 δ), формальный кинетический порядок меньше единицы и они хорошо спрямляются в координатах $I_{ox} - \sqrt{C_0}$ (см. рис. 2 δ). Дробный кинетический порядок $n = \frac{1}{2}$ указывает на то, что механизм электрокаталитической реакции осложнен стадией адсорбции, в которой, возможно, участвуют ассоциированные формы вещества. Образование димеров у хлорсодержащих фенолов возможно. На это указывают литературные данные [14] и результаты квантово-химических расчетов, выполненных с помощью программы $Hyper\ Chem\ 8.0\ [14]$. У 2,4ДХФ в ассоциате образуется также связь H-Cl (см. рис. 2 δ), которой нет у монохлорфенолов. Значения констант скорости электроокисления с порядком $n=\frac{1}{2}$ также

Рис. 2. Концентрационные зависимости тока окисления 4-хлорфенола и 2,4-дихлорфенола:

 $m{a}$, $m{\delta}$ — зависимости скорости (тока) окисления от начальной концентрации вещества; $m{e}$ — спрямление зависимостей I_{ox} — C для 2,4-дихлорфенола согласно порядку $n=\frac{1}{2}$; $m{c}$ — модель димера 2,4-дихлорфенола [14]

приводятся в таблице 1. Как и в случае констант K_1 для 4-хлорфенола, константы $K_{1/2}$ для 2,4-дихлорфенола выше в 1,5–2 раза у анодов $\mathrm{SnO}_2/\mathrm{Ti}$ и $\mathrm{IrO}_2/\mathrm{Ti}$ по сравнению с платинированным титаном.

Скорость электроокисления зависит от состава катализатора, природы окисляемого вещества и среды. На гистограммах рисунка 3 мы сравнили значения тока окисления при комнатной температуре и высокой концентрации вещества (a), а также при температуре выше комнатной ($40~^{\circ}$ С) и низкой концентрации вещества (\bar{a}). Видно, что скорость окисления 2,4-дихлорфенола, как правило, ниже по сравнению с 4-хлорфенолом, аноды $\mathrm{SnO_2}$ / Ti и $\mathrm{IrO_2}$ / Ti более активны, чем Pt / Ti -анод. Наибольший двухкратный рост скорости окисления по сравнению с платинированным титаном показывает анод $\mathrm{IrO_2}$ / Ti в кислой среде.

Таблица 1 Формальный кинетический порядок и константы скорости электроокисления 4-хлорфенола и 2,4-дихлорфенола на Ті-анодах в кислой (1) и щелочной (2) среде, Размерность констант — K_1 [А · (л/моль)] , $K_{1/2}$ [А · (л/моль) $^{1/2}$]

Вещество	Анод	Pt / Ti		SnO,/Ti		IrO,/Ti	
	Среда	1	2	1	2	1	2
4 ХФ	n	1	1	1	1	1	1
	K_1	34	29	52	41	55	46
	$R^{\frac{1}{2}}$	0,98	0,98	0,98	0,99	0,99	0,99
2,4 ДХФ	n	0,5	0,5	0,5	0,5	0,5	0,5
	K ₁₄	0,245	0,275	0,605	0,357	0,292	0,514
	$\frac{\mathbf{K}_{1/2}}{R^2}$	0,99	0,99	0,99	0,99	0,99	0,99

Рис. 3. Сравнение активности металлооксидных катализаторов с Pt / Ti-анодом по данным концентрационных зависимостей при $C_0 = 0.143$ мМ и 25 °C (a) и температурных зависимостей при $C_0 = 0.03$ мМ и 40 °C (δ)

Влияние температуры на ток пика окисления I_{ox} в случае 2,4-дихлорфенола демонстрирует рисунок 4 a. Активность анодов в щелочной среде выше, чем в кислой. Аналогичный результат был получен и для 4-хлорфенола на SnO_2 / Ti, но у образца IrO_2 /Ti заметного влияния среды на активность катализатора не наблюдалось.

Зависимости $I_{ox}-T$ близки к линейной форме с регрессионными коэффициентами R^2 выше 0,98, поэтому рассчитывались температурные коэффициенты $\beta = \frac{\Delta I_{ox}}{\Delta T}$ (см. табл. 2). Для 4-хлорфенола они не зависят от среды

и материала анода и составляют $\beta = 0.12 \div 0.16$. Наибольшее значение β у системы IrO_2/Ti — 2,4 ДХФ в щелочном фоновом растворе.

Изменение химического состава поверхности Ті-анода играет ключевую роль, поскольку от него зависит энергетика адсорбции хлорорганического вещества и процесса его электроокисления. На рисунке 4 σ для примера показаны две аррениусовские зависимости. В узком интервале температур зависимости $\ln I_{ox} - \frac{1}{T}$ не всегда имеют высокое значение R^2 , но сравнение экспериментальной энергии активации электрохимического окисления вещества E_a представляется целесообразным (табл. 2), учитывая разную форму субстратов, влияющую на прочность связи молекул хлорфенолов с поверхностью.

Рис. 4. a — температурные зависимости тока окисления 2,4-дихлорфенола, δ — пример аррениусовских зависимостей

Таблица 2 Температурный коэффициент β (мА/град) и значения кажущейся энергии активации E_a (кДж/моль) электроокисления 4-хлорфенола и 2,4-дихлорфенола на платинированном и оксидных титановых анодах в кислой (1) и щелочной (2) среде

Dannaanna	Образец	Pt /Ti		SnC	₂ /Ti	IrO ₂ /Ti		
Вещество	Среда	1	2	1	2	1	2	
4 ХФ	0	0,15	0,08	0,12	0,14	0,15	0,16	
2,4 ДХФ	β	0,032	0,034	0,075	0.067	0,13	0,21	
4 ХФ	E_{a}	28	24	25	12	29	29	
	$\ln I_0$	12,5	10,3	11,0	6,5	12,8	12,7	
	R^2	0,97	0,97	0,96	0,95	0,96	0,99	
2,4 ДХФ	E_{a}	18	15	16	9	31	28	
	$\ln I_0$	7,3	6,6	7,5	5,2	13,7	13,0	
	R^2	0,99	0,99	0,97	0,92	0,96	0,98	

С наименьшим значением $E_a=9-12$ кДж/моль протекает окисление обоих веществ в щелочной среде на аноде ${\rm SnO_2}/{\rm Ti}$. Увеличенные в ~ 3 раза значения $E_a \sim 30$ кДж/моль были получены для ${\rm IrO_2}/{\rm Ti}$, и они не зависят от вещества и среды. Более высокая активность оксидных анодов связана не только со снижением E_a (анод ${\rm SnO_2}/{\rm Ti}$), но и с увеличенной рабочей поверхностью электрода. На это указывает значение логарифма предфактора (${\rm ln}\ I_{\rm ox}$), которое в случае системы 2,4 ДХФ – ${\rm IrO_2}/{\rm Ti}$ увеличивается в два раза. Кроме того, после платинирования образца ${\rm IrO_2}/{\rm Ti}$ коэффициент шероховатости ${\rm Pt}/{\rm IrO_2}/{\rm Ti}$ стал равен F=76, т. е. в два раза больше, чем у образца ${\rm Pt}/{\rm Ti}$ с F=35, полученного в тех же условиях осаждения ${\rm Pt}$.

Электролиз. На рисунке 5 показаны спектры поглощения водного раствора 2,4-дихлорфенола в кислой среде с анодом ${\rm IrO}_2/{\rm Ti}$, изменяющиеся по ходу электролиза.

Рис. 5. *a* — УФ-спектры поглощения 2,4-дихлорфенола в растворе H_2SO_4 до электролиза (черная линия) и после электролиза различной длительности с анодом IrO_2 / Ti; $\pmb{\delta}$ — изменение степени превращения 2,4ДХФ в ходе электролиза

Аналогичный спектр получен для SnO_2 / Ті. В исходном спектре (до электролиза — это черная линия) имеются две полосы поглощения /п.п./ молекулярной формы $X\Phi$ — 200–210 нм (I) и 280 нм (II), а также плечо в области 230 нм, принадлежащее анионной форме вещества. Длинноволновая полоса (280 нм) связана с электронным переходом из основного состояния S_0 в $S_2(\pi\sigma^*)$, частично локализованного на связи C–Cl [17]. Амплитуды (A) полос I и II уменьшаются, а амплитуда п.п. ~255 нм (III), принадлежащая бензохинону, увеличивается во времени. Смещение пика I в коротковолновую область указывает на присутствие гидрохинона, из которого образуется бензохинон. В условиях электрокатализа мы не наблюдаем поглощения при $\lambda \ge 290$ нм, которое связано с образованием интермедиатов $X\Phi$ с гидрохиноном и бензохиноном, как в случае фотоокисления на TiO_2 катализаторах [11].

На рисунке 5 б представлены временные зависимости степени превращения $\alpha = [A_0 - A] / A_0$, где A_0 и A — амплитуды до и в процессе электролиза соответственно. Видно, что для образца $\mathrm{SnO_2}/\mathrm{Ti}$ зависимость α , рассчитанная по коротковолновому максимуму, линейно увеличивается по времени, что соответствует псевдонулевому порядку с высоким коэффициентом линейной регрессии $R^2 = 0.99$. Наклон прямой равен скорости и эффективной константе скорости окисления $K_{\mathrm{эфф.}}$ (табл. 3). Зависимость степени превращения от длительности электролиза с анодом $\mathrm{IrO_2}/\mathrm{Ti}$ имеет два линейных участка — начальный совпадает с линией анода $\mathrm{SnO_2}/\mathrm{Ti}$, но после 4 часов активность $\mathrm{IrO_2}/\mathrm{Ti}$ больше — значение $K_{\mathrm{эфф.}}$ возрастает в два раза (табл. 3), что может быть связано с изменением в ходе электролиза состояния иридия, например, его восстановления $\mathrm{IrO_2} \to \mathrm{Ir^{+3}} \to \mathrm{Ir^0}$.

Таблица (Константы скорости электролиза 2,4-дихлорфенола (кислая среда, 25 °C)

Образец	SnO ₂ / Ti	${ m IrO}_2/{ m Ti}$						
λ , нм при $t = 0$, (пик)	210 (I)	210 (I)	210 (I)	280 (II)	280 (II)			
Интервал времени, ч.	1-7	1-4	5-8	4-8	1-8			
Формальный порядок	0	0	0	0	1			
$K_{_{2\Phi\Phi}},\mathbf{u}^{-1}$	0,043	0,036	0,077	0,074	0,12			

Расчет α по длинноволновому максимуму на интервале 5–8 часов дает то же значение $K_{_{3\varphi\varphi}}$ (n=0) для IrO_2 / Ті. Но начальный участок нелинейный, кинетика электролиза соответствует первому порядку, который удовлетворительно описывает и всю временную зависимость; она хорошо спрямляется в координатах $\ln \alpha$ — время. Значит, на определение порядка n влияет специфичность полосы поглощения.

Содержание элементов в поверхностном слое образцов и зарядовое состояние олова и иридия в конце электролиза в кислой среде было проанализировано методом РФЭС (табл. 4, рис. 6). Установлено присутствие титана на поверхности обоих образцов, то есть сплошное покрытие Ti-фольги слоем оксида отсутствует. В случае SnO_2 / Ti атомное отношение Ti / Sn=10. В большом количестве присутствует углерод. Содержание серы невелико, 0,3–0,4 ат. %, а у Pt / Ti оно в 10 раз больше.

Таблица 4 Концентрации элементов на поверхности по данным обзорных спектров

Образец	Элемент и его атомный %								
	О	C	N	Cl	S	Si	Ti	Sn	Ir и Pt
SnO ₂ /Ti	30,4	55,6	6,2	0,7	0,4	1,1	3,0	2,6	_
IrO ₂ /Ti	20,6	66,9	3,4	6,0	0,3	1,0	1,6	_	0,02
Pt / Ti	27,6	56,9	7,7	1,6	3,1	0,2	0,2	_	2,5

Рис. 6. Рентгенофотоэлектронные спектры высокого разрешения линий олова (Sn3d-электронов) анода SnO_2 / Ti (a), иридия и титана (Ti3s и Ir4f) анода IrO_2 / Ti (δ) и платины Pt4f анода Pt / Ti (ϵ). Атомное отношение O / Ti равно 30/3 = 10 (SnO $_2$ /Ti) и 20.6 / 1.6 = 13 (IrO $_2$ /Ti)

У IrO_2 / Ті содержание хлора в 10 раз больше, чем у SnO_2 / Ті, поэтому из-за высокого содержания углерода и хлора не удаєтся получить хороший сигнал иридия. Кроме того, линии ТіЗѕ-электронов и Ir4f-электронов накладываются. Значения энергии связи 495,6 и 487,2 эВ линий олова $3d_{3/2}$ и $3d_{5/2}$ совпадают со справочными данными SnO_2 [12]. Спектр Sn LMM также соответствует оксиду олова (IV). На рисунке 6 σ приведен $P\Phi$ Э-спектр области, где располагаются линии ТіЗѕ (самая интенсивная) и Ir4f с разложением на компоненты. Энергия связи $Ir4f_{7/2}$ (62,4 эВ) соответствует как оксиду IrO_2 , так хлориду $IrCl_3$. Здесь же приведен $P\Phi$ Э спектр платины (рис. 6 σ), которая в основном присутствует в виде Pt^{+2} (70 % атомов) с энергиями связи 73,1 и 76,4 эВ линий $Pt4f_{7/2}$ (1) и $Pt4f_{5/2}$ (2). Имеются также Pt^{+4} (20 %) с энергиями 74,6 (1) и 77,9 (2) эВ и восстановленная форма Pt° (10 %) с энергиями 71,0 (1) и 74,3 (2) эВ.

Таким образом, аноды SnO_2 / Ті и IrO_2 / Ті по активности в реакции окисления 4-хлорфенола и 2,4-дихлорфенола превосходят платинированный Ті-анод. Данные циклической вольтамперометрии показывают нелинейные концентрационные зависимости скорости окисления 2,4-дихлорфенола с порядком ½, что предполагает

участие в электрохимическом превращении ассоциированных молекул (димеров). Сопоставлены константы скорости и энергии активации E_a электроокисления веществ на аноде с платиной и с оксидами. Наиболее низкие значения E_a были получены в щелочной среде с образцом ${\rm SnO_2}/{\rm Ti}$ ($9{\rm -}12~{\rm кДж/моль}$), тогда как у ${\rm IrO_2}/{\rm Ti}$ они составляют 28–31 кДж/моль. После электролиза в поверхностном слое ${\rm SnO_2}/{\rm Ti}$ и ${\rm IrO_2}/{\rm Ti}$ присутствует титан и в 10 раз меньше серы по сравнению с ${\rm Pt}/{\rm Ti}$.

Литература

- 1. Желовицкая А.В., Ермолаева Е.А., Дресвянников А.Ф. Окисление органических соединений с помощью гидроксид-радикала, генерируемого в растворах химическим и электрохимическим методами // Вестник Казанского технолог. унив. 2008. № 6. С. 209.
- 2. Заев Д.А., Михаленко И.И. Квантово-химический анализ димеризации хлорфенолов // Успехи синтеза и комплексообразования: тезисы докладов І Всероссийской молодежной школы-конференции (Москва, 25–28 апреля 2016 г.). М.: Изд-во РУДН, 2016. С. 294.
- 3. *Салех М. Мокбель, Колосов Е.Н., Михаленко И.И.* Окисление фенола и хлорфенолов на платинированных титановых анодах в кислой среде // Журнал физической химии. 2016. Т. 90. № 6. С. 960–963.
- 4. *Салех М. Мокбель, Колосов Е.Н., Михаленко И.И.* Электрокаталитическое окисление 4-хлорфенола на титане, модифицированном оксидом иридия // Материалы I Всерос. научно-практ. конф. (г. Иркутск, 28–29 апреля 2015 г.). Иркутск: Изд-во ИТНИТУ, 2015. С. 3–5.
- 5. *Bestaoui N., Prouzet E.* Chimie Douce Route to Pure Iridium Oxide // J. Chem. Mater. 1997. V. 9. P. 1036.
- 6. Chatzisymeona E., Fierrob S., Karafyllis I., Mantzavinosa D., Kalogerakisa N. Katsaounisa Anodic oxidation of phenol on Ti / IrO₂ electrode: Experimental studies // Catalysis Today. 2010. V. 151. P. 185.
- 7. Cruz J.C., Baglio V., Siracusano S., Ornelas R., Ortiz-Frade L., Arriaga L.G., et al. Nanosized IrO₂ electrocatalysts for oxygen evolution reaction in an SPE electrolyzer // J. Nanopart Res. 2011. V.13. P.1639.
- 8. *Ezerskis Z., Zusus. Z.* Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography-mass spectrometry // Pure Appl. Chem. 2001. V. 73. n⁰12. P. 1829.
- 9. Fierro S., Kapalka A., Comninellis C. Electrochemical comparison between IrO₂ prepared by thermal treatment of iridium metal and IrO₂ prepared by thermal decomposition of H₂IrCl₄ solution // Electrochemistry Commun. 2010. V. 12. P. 172.
- 10. Haiqing Xu, Aiping Li and Xiaochun Cheng Electrochemical Performance of Doped SnO₂ Coating on Ti Base as Electrooxidation Anode // Int. J. Electrochem. Sci. 2011. V. 6. C. 5114.
- 11. Kais Elghniji, Olfa Hentati, Najwa Mlaik, Ayman Mahfoudh, Mohamed Ksibi Photocatalytic degradation of 4-chlorophenol under P-modified TiO₂/UV system // Journal of Environmental Sciences. 2012. V. 24 (3). P. 479.
- 12. Kövér L., Kovács Z., Sanjinés R., Moretti G., Cserny I., Margaritondo G., Pálinkás J., Adachi H. Electronic structure of tin oxides: High-resolution study of XPS and Auger spectra // Surface and Interface Analysis. 1995. V. 23. № 7–8. P. 461.

- 13. *Janseen L.J.J.*, *Koene L*. The role of electrochemistry and electrochemical technology in environmental protection // Chemical Engineering Journal. 2002. V. 85. P. 137.
- 14. Passivirta J., Lahtiperä M., Leskijärvi T. Experiences of structure analyses of chlorophenol dimmers and trimers found in different samples // Pergamon Series of Environmental Sciences. 2013. V.5. P.191.
- 15. *Panic V.V., Dekanski A.B.* Oxidation of phenol on RuO₂ TiO₂ / Ti anodes // J. Solid State Electrochemistry. 2005. V. 9. P.43.
- 16. Sirers I., Brillas E.G., Cerisola P.M. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO₂ as high oxidation power anodes // Journal of Electroanalytical Chemistry. 2008. V. 613. P.151.
- 17. Svetlichnyi V.A., Chaikovskaya O.N., Bazyl' O.K. Photolysis of phenol and parachlorophenol by UV laser excitation // High Energy Chem. 2001. V. 35 (4). P. 258.

Literatura

- 1. Zheloviczkaya A.V., Ermolaeva E.A., Dresvyannikov A.F. Okislenie organicheskix soedinenij s pomoshh'yu gidroksid-radikala, generiruemogo v rastvorax ximicheskim i e'lektroximicheskim metodami // Vestnik Kazanskogo texnolog. univ. 2008. № 6. S. 209.
- 2. Zaev D.A., Mixalenko I.I. Kvantovo-ximicheskij analiz dimerizacii xlorfenolov // Uspexi sinteza i kompleksoobrazovaniya: tezisy' dokladov I Vserossijskoj molodezhnoj shkoly'-konferencii (Moskva, 25–28 aprelya 2016 g.). M.: Izd-vo RUDN, 2016. S. 294.
- 3. *Salex M. Mokbel', Kolosov E.N., Mixalenko I.I.* Okislenie fenola i xlorfenolov na platinirovanny'x titanovy'x anodax v kisloj srede // Zhurnal fizicheskoj ximii. 2016. T. 90. № 6. S. 960–963.
- 4. *Salex M. Mokbel'*, *Kolosov E.N.*, *Mixalenko I.I.* E'lektrokataliticheskoe okislenie 4-xlorfenola na titane, modificirovannom oksidom iridiya // Materialy' I Vseros. nauchnoprakt. konf. (g. Irkutsk, 28–29 aprelya 2015 g.). Irkutsk: Izd-vo ITNITU, 2015. S. 3–5.
- 5. *Bestaoui N., Prouzet E.* Chimie Douce Route to Pure Iridium Oxide // J. Chem. Mater. 1997. V. 9. P. 1036.
- 6. Chatzisymeona E., Fierrob S., Karafyllis I., Mantzavinosa D., Kalogerakisa N. Katsaounisa Anodic oxidation of phenol on Ti / IrO₂ electrode: Experimental studies // Catalysis Today. 2010. V. 151. P. 185.
- 7. Cruz J.C., Baglio V., Siracusano S., Ornelas R., Ortiz-Frade L., Arriaga L.G., et al. Nanosized IrO₂ electrocatalysts for oxygen evolution reaction in an SPE electrolyzer // J. Nanopart Res. 2011. V.13. P.1639.
- 8. *Ezerskis Z., Zusus. Z.* Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography-mass spectrometry // Pure Appl. Chem. 2001. V. 73. n⁰12. P. 1829.
- 9. Fierro S., Kapalka A., Comninellis C. Electrochemical comparison between IrO₂ prepared by thermal treatment of iridium metal and IrO₂ prepared by thermal decomposition of H₂IrCl₄ solution // Electrochemistry Commun. 2010. V. 12. P. 172.
- 10. Haiqing Xu, Aiping Li and Xiaochun Cheng Electrochemical Performance of Doped SnO₂ Coating on Ti Base as Electrooxidation Anode // Int. J. Electrochem. Sci. 2011. V. 6. C. 5114.
- 11. Kais Elghniji, Olfa Hentati, Najwa Mlaik, Ayman Mahfoudh, Mohamed Ksibi Photocatalytic degradation of 4-chlorophenol under P-modified TiO₂/UV system // Journal of Environmental Sciences. 2012. V. 24 (3). P. 479.

- 12. Kövér L., Kovács Z., Sanjinés R., Moretti G., Cserny I., Margaritondo G., Pálinkás J., Adachi H. Electronic structure of tin oxides: High-resolution study of XPS and Auger spectra // Surface and Interface Analysis. 1995. V. 23. № 7–8. P. 461.
- 13. *Janseen L.J.J.*, *Koene L*. The role of electrochemistry and electrochemical technology in environmental protection // Chemical Engineering Journal. 2002. V. 85. P. 137.
- 14. Passivirta J., Lahtiperä M., Leskijärvi T. Experiences of structure analyses of chlorophenol dimmers and trimers found in different samples // Pergamon Series of Environmental Sciences. 2013. V.5. P.191.
- 15. *Panic V.V., Dekanski A.B.* Oxidation of phenol on RuO₂ TiO₂ / Ti anodes // J. Solid State Electrochemistry. 2005. V. 9. P.43.
- 16. Sirers I., Brillas E.G., Cerisola P.M. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO₂ as high oxidation power anodes // Journal of Electroanalytical Chemistry. 2008. V. 613. P.151.
- 17. Svetlichnyi V.A., Chaikovskaya O.N., Bazyl' O.K. Photolysis of phenol and parachlorophenol by UV laser excitation // High Energy Chem. 2001. V. 35 (4). P. 258.

Saleh M. Mokbel, E.N. Kolosov, I.I. Mikhalenko

Electrochemical Oxidation of 4- and 2.4-chlorophenols on Anodes SnO₂ / Ti, IrO₂ / Ti

Activity of the electrodes SnO_2 / Ti and IrO_2 / Ti in potentiodynamic and galvanostatic anodic oxidation of 4-chlorophenol (4HF) and 2.4-dichlorophenol (2,4DHF) in acidic and alkaline background solution has been studied in the work. It was found that the formal kinetic order of transformation for 4HF (n=1) and 2,4DHF ($n=\frac{1}{2}$) is different — the first in 4HF and less than first in 2.4 DHF. Fractional order $n=\frac{1}{2}$ was explained by adsorption and participation in the reaction of dimers. The constants of rate of oxidation on metal oxide anodes is greater than on the anode Pt/Ti. The electrolysis of 2,4 DHF in acidic medium monitored by UV spectra occurs for the first 4 hours on the pseudo-zero order with the same speed for IrO_2 / Ti and SnO_2 / Ti. At the duration of 5–8 hours activity of IrO2 / Ti was twice as SnO_2 / Ti activity. The analysis of electrocatalysts by XPS method showed that after electrolysis on the surface of IrO_2 / Ti and SnO_2 / Ti content of sulfur is 10 times lower in comparison with the Pt / Ti.

Keywords: chlorophenols; anodic oxidation; titanium foil; tin and iridium oxides; platinum.