Home Releases № 3 (55)

CHANGES IN THE ACTIVITY OF THE CEREBRAL CORTEX AND MAXIMUM HAND STRENGTH AFTER VOLUNTARY HYPERVENTILATION

Biological Sciences , UDC: 612.216.2 DOI: 10.25688/2076-9091.2024.55.3.04

Authors

  • Naletov Alexander Andreevich
  • Seliverstova Valentina Viktorovna Candidate of Biological Sciences
  • Petrov Andrey Borisovich Candidate of Pedagogical Sciences

Annotation

The aim of our study was to investigate the effects of voluntary hyperventilation on maximal handgrip strength and electroencephalographic power spectrum. We found a significant F = 5,044, p = 0,046 increase in maximal handgrip strength and increases in the EEG Theta band (4–8 Hz) in prefrontal (Fp1, Fp2, p < 0,05), motor (Cz, p < 0,05), Alpha band in prefrontal (Fp1, Fp2, Fpz, p < 0,05), motor (Cz, C4, p < 0,05) and parietal (P3, Pz, P4, p < 0,05) cortices, Beta1 band (13–19 Hz) in prefrontal (Fp2, p < 0,05) and motor (Cz, p < 0,05) cortices after hyperventilation. Hyperventilation increases maximum handgrip strength and alters activity in prefrontal, motor and parietal cortices.

How to link insert

Naletov, A. A., Seliverstova, V. V. & Petrov, A. B. (2924). CHANGES IN THE ACTIVITY OF THE CEREBRAL CORTEX AND MAXIMUM HAND STRENGTH AFTER VOLUNTARY HYPERVENTILATION Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", № 3 (55), 53. https://doi.org/10.25688/2076-9091.2024.55.3.04
References
1. 1. Blain-Moraes S., Tarnal V., Vanini G., Bel-Behar T., Janke E. Network efficiency and posterior alpha patterns are markers of recovery from general anesthesia: a high-density electroencephalography study in healthy volunteers. Frontiers in human neuroscience. 2017;11:328. https://doi.org/10.3389/fnhum.2017.00328
2. 2. Cai G., Wu M., Ding Q., Lin T., Li W., Jing Y. The corticospinal excitability can be predicted by spontaneous electroencephalography oscillations. Frontiers in Neuroscience. 2021;15:722231. https://doi.org/10.3389/fnins.2021.722231
3. 3. Carr A. J., Hopkins W. G., Gore C. J. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports medicine. 2011;41:801–814. https://doi.org/10.2165/11591440-000000000-00000
4. 4. Chuang L. Y., Huang C. J., Hung T. M. The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. International Journal of Psychophysiology. 2013;90(3):321–328. https://doi.org/10.1016/j.ijpsycho.2013.10.002
5. 5. Duarte J., Markus H., Harrison M. J. G. Changes in cerebral blood flow as monitored by transcranial Doppler during voluntary hyperventilation and their effect on the electroencephalogram. Journal of Neuroimaging. 1995;5(4):209–211. https://doi.org/10.1111/jon199554209
6. 6. Grgic J., Rodriguez R. F., Garofolini A., Saunders B., Bishop D. J., Schoenfeld B. J., Pedisic Z. Effects of sodium bicarbonate supplementation on muscular strength and endurance: a systematic review and meta-analysis. Sports Medicine. 2020;50:1361–1375. https://doi.org/10.1007/s40279-020-01275-y
7. 7. Hussain S. J., Cohen L. G., Bönstrup M. Beta rhythm events predict corticospinal motor output. Scientific Reports. 2019;9(1):18305. https://doi.org/10.1038/s41598-019-54706-w
8. 8. Johnson R. A. A quick reference on respiratory alkalosis. Veterinary Clinics: Small Animal Practice. 2017;47(2):181–184. https://doi.org/10.1016/j.cvsm.2016.10.005
9. 9. Kluger D. S., Gross J. Depth and phase of respiration modulate cortico-muscular communication. Neuroimage. 2020;222:117272. https://doi.org/10.1016/j.neuroimage.2020.117272
10. 10. Kraaier V., Van Huffelen A. C., Wieneke G. H., Van der Worp H. B., Bär P. R. Quantitative EEG changes due to cerebral vasoconstriction. Indomethacin versus hyperventilation-induced reduction in cerebral blood flow in normal subjects. Electroencephalography and clinical neurophysiology. 1992;82(3):208–212. https://doi.org/10.1016/0013-4694(92)90169-I
11. 11. Macefield G., Burke D. Paraesthesiae and tetany induced by voluntary hyperventilation: increased excitability of human cutaneous and motor axons. Brain. 1991;114(1):527–540. https://doi.org/10.1093/brain/114.1.527
12. 12. Mogyoros I., Kiernan M. C., Burke D., Bostock H. Excitability changes in human sensory and motor axons during hyperventilation and ischaemia. Brain: a journal of neurology. 1997;120(2):317–325. https://doi.org/10.1093/brain/120.2.317
13. 13. Mogyoros I., Bostock H., Burke D. Mechanisms of paresthesias arising from healthy axons. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 2000;23(3):310–320. https://doi.org/10.1002/(SICI)1097-4598(200003)23:33.0.CO;2-A
14. 14. Ng S. C., Raveendran P. Effects of physical fatigue onto brain rhythms //5th Kuala Lumpur International Conference on Biomedical Engineering 2011: (BIOMED 2011) 20–23 June 2011, Kuala Lumpur, Malaysia. Springer Berlin Heidelberg, 2011;511–515. https://doi.org/10.1007/978-3-642-21729-6_129
15. 15. Ofori E., Coombes S. A., Vaillancourt D. E. 3D Cortical electrophysiology of ballistic upper limb movement in humans. Neuroimage. 2015;115:30–41. https://doi.org/10.1016/j.neuroimage.2015.04.043
16. 16. Sakamoto A., Naito H., Chow C. M. Hyperventilation-aided recovery for extra repetitions on bench press and leg press. The Journal of Strength & amp; Conditioning Research. 2020;34(5):1274–1284. https://doi.org/10.1519/JSC.0000000000003506
17. 17. Selitrenikova T, Ageev E, Kolokoltsev M. Тranscranial electrical stimulation to increase psychophysiological stability, technical and tactical readiness of MMA fighters. Journal of Physical Education and Sport. 2022;22(6):1419–1425. https://doi.org/10.7752/jpes.2022.06178
18. 18. Sparing R., Dafotakis M., Buelte D., Meister I. G., Noth J. Excitability of human motor and visual cortex before, during, and after hyperventilation. Journal of Applied Physiology. 2007;102(1):406–411. https://doi.org/10.1152/japplphysiol.00770.2006
Download file .pdf 330.49 kb