Home Releases 2021, №4 (44)

Native and synthetic ligands for G-quadruplexes

Biological Sciences , UDC: 577.1 DOI: 10.25688/2076-9091.2021.44.4.2

Authors

  • Lizunova Sofya Aleksandrovna
  • Vedekhina Tatyana Sergeevna Candidate of Chemical Sciences, Candidate of Chemical Sciences
  • Varizhuk Anna Mikhailovna Doctor of Chemical Sciences, Doctor of Chemical Sciences

Annotation

G-quadruplex (G4) is a well-known secondary nucleic acid structure containing guanine-rich sequences, and plays a significant role in pharmacological and biological phenomena associated with oncological diseases. Thus, G4 ligands are receiving a lot of attention as potential therapeutic agents. To date, a large number of DNA/RNA G4 ligands have been developed in several laboratories. The use of G4 ligands in medical practice is hindered mainly by their toxicity and low selectivity. This low selectivity can cause undesired effects, resulting in clinical trial cancellation. In this review, we refer to recent studies of natural and synthetic ligands interacting with quadruplexes. Macrocyclic compounds (telomestatin derivatives and porphyrins), natural condensed heterocyclic compounds (indoles, indolysins, berberines, flavonoids and phenoxazines), synthetic derivatives (acridines, quinazolones and quinolines, phenanthrolines and anthraquinones), modular ligands and metal complexes are considered as G4-targeting therapeutic agents.

How to link insert

Lizunova, S. A., Vedekhina, T. S. & Varizhuk, A. M. (2021). Native and synthetic ligands for G-quadruplexes Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", 2021, №4 (44), 16. https://doi.org/10.25688/2076-9091.2021.44.4.2
References
1. 1. 1,4- and 2,6-Disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase / P. J. Perry [et al.] // Journal of Medicinal Chemistry. 1998. Vol. 41 (17). P. 3253–3260. DOI: https://doi.org/10.1021/jm9801105
2. 2. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells / N. Nagesh [et al.] // Biochimica et Biophysica Acta (BBA) — General Subjects. 2015. Vol. 1850 (1). P. 129–140. DOI: https://doi.org/10.1016/j.bbagen.2014.10.004
3. 3. A small molecule that represses translation of G-quadruplex-containing mRNA / Y. Katsuda [et al.] // Journal of the American Chemical Society. 2016. Vol. 138 (29). P. 9037–9040. DOI: https://doi.org/10.1021/jacs.6b04506
4. 4. Adaptive and specific recognition of telomeric G-quadruplexes via polyvalency induced unstacking of binding units / J. Abraham Punnoose [et al.] // Journal of the American Chemical Society. 2017. Vol. 139 (22). P. 7476–7484. DOI: https://doi.org/10.1021/jacs.7b00607
5. 5. An overview of quadruplex ligands: their common features and chemotype diversity / V. Pirota [et al.] // Annual Reports in Medicinal Chemistry. 2020. Vol. 54. P. 163–169. DOI: https://doi.org/10.1016/bs.armc.2020.04.008
6. 6. Anthracene 9,10-diones as potential anticancer agents. Synthesis, DNA-binding, and biological studies on a series of 2,6-disubstituted derivatives / M. Agbandje [et al.] // Journal of Medicinal Chemistry. 1992. Vol. 35 (8). P. 1418–1429. DOI: https://doi.org/10.1021/jm00086a010
7. 7. Anticancer activity of novel pyrido[2,3-b]indolizine derivatives: the relevance of phenolic substituents / A. Boot [et al.] // Anticancer Research. 2014. Vol. 34 (4). P. 1673–1677. URL: https://ar.iiarjournals.org/content/34/4/1673
8. 8. Berberine, an epiphany against cancer / L. M. Guamán Ortiz [et al.] // Molecules. 2014. Vol. 19. P. 12349–12367. DOI: https://doi.org/10.3390/molecules190812349
9. 9. Brooks T. A., Hurley L. H. Targeting MYC expression through G-quadruplexes // Genes & Cancer. 2010. Vol. 1 (6). P. 641–649. DOI: https://doi.org/10.1177/1947601910377493
10. 10. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours / H. Xu [et al.] // Nature Communications. 2017. Vol. 8. Art. 14432. DOI: https://doi.org/10.1038/ncomms14432
11. 11. Data on secondary structures and ligand interactions of G-rich oligonucleotides that defy the classical formula for G4 motifs / M. Vlasenok [et al.] // Data in Brief. 2017. Vol. 11. P. 258–265. DOI: https://doi.org/10.1016/j.dib.2017.02.023
12. 12. David A. V. A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid // Pharmacognosy Reviews. 2016. Vol. 10 (20). P. 84–89. DOI: http://dx.doi.org/10.4103/0973-7847.194044
13. 13. Design of Modular G-quadruplex Ligands / A. R. Duarte [et al.] // ChemMedChem. 2018. Vol. 13 (9). P. 869–893. DOI: https://doi.org/10.1002/cmdc.201700747
14. 14. Design, synthesis, and evaluation of isaindigotone derivatives to downregulate c-MYC transcription via disrupting the interaction of NM23-H2 with G-quadruplex / C. Shan [et al.] // Journal of Medicinal Chemistry. 2017. Vol. 60 (4). P. 1292–1308. DOI: https://doi.org/10.1021/acs.jmedchem.6b01218
15. 15. Dolinnaya N.G., Ogloblina A.M., Yakubovskaya M.G. Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: Overview 50 years after their discovery // Biochemistry (Moscow). 2016. Vol. 81 (13). P. 1602–1649. DOI: http://dx.doi.org/10.1134/S0006297916130034
16. 16. Dual recognition of human telomeric G-quadruplex by neomycin-anthraquinone conjugate / N. Ranjan [et al.] // Chemical Communications. 2013. Vol. 49 (51). P. 5796–5798. DOI: https://doi.org/10.1039/C3CC42721H
17. 17. Dunn C. J., Goa K. L. Mitoxantrone: a review of its pharmacological properties and use in acutenonlymphoblastic leukaemia // Drugs & Aging. 1996. Vol. 9 (2). P. 122–147. DOI: https://doi.org/10.2165/00002512-199609020-00007
18. 18. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells / E. Izbicka [et al.] // Cancer Research. 1999. Vol. 59 (3). P. 639–644. URL: https://cancerres.aacrjournals.org/content/canres/59/3/639.full.pdf
19. 19. Evaluation of the interaction between long telomeric DNA and macrocyclic hexaoxazole (6OTD) dimer of a G-quadruplex ligand / K. Iida [et al.] // Molecules. 2013. Vol. 18 (4). P. 4328–4341. DOI: https://doi.org/10.3390/molecules18044328
20. 20. Genistein — a supplement improving efficiency of the human body: A review / K. Leis [et al.] // Science & Sports. 2021. Vol. 36 (5). P. 359–367. DOI: https://doi.org/10.1016/j.scispo.2020.08.005
21. 21. Genistein and cancer: current status, challenges, and future directions / C. Spagnuolo [et al.] // Advances in Nutrition. 2015. Vol. 6 (4). P. 408–419. DOI: https://doi.org/10.3945/an.114.008052
22. 22. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species / A. Verma [et al.] // Journal of Medicinal Chemistry. 2008. Vol. 51 (18). P. 5641–5649. DOI: https://doi.org/10.1021/jm800448a
23. 23. Golub E., Lu C. H., Willner I. Metalloporphyrin/G-quadruplexes: from basic properties to practical // Journal of Porphyrins and Phthalocyanines. 2015. Vol. 19 (1–3). P. 65–91. DOI: https://doi.org/10.1142/S1088424615300025
24. 24. G-quadruplex binding ligands: from naturally occurring to rationally designed molecules / T. Vy Thi Le [et al.] // Current Pharmaceutical Design. 2012. Vol. 18 (14). P. 1948–1972. DOI: https://doi.org/10.2174/138161212799958431
25. 25. G-quadruplex DNA bound by a synthetic ligand is highly dynamic / P. V. Jena [et al.] // Journal of the American Chemical Society. 2009. Vol. 131 (35). P. 12522–12523. DOI: https://doi.org/10.1021/ja903408r
26. 26. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs / Q. Cao [et al.] // Inorganic Chemistry Frontiers. 2017. Vol. 4 (1). P. 10–32. DOI: https://doi.org/10.1039/C6QI00300A
27. 27. Highly efficient G-quadruplex recognition by bisquinolinium compounds / A. De Cian [et al.] // Journal of the American Chemical Society. 2007. Vol. 129 (7). P. 1856–1857. DOI: https://doi.org/10.1021/ja067352b
28. 28. High-throughput sequencing of DNA G-quadruplex structures in the human genome / V. S. Chambers [et al.] // Nature Biotechnology. 2015. Vol. 33 (8). P. 877–881. DOI: https://doi.org/10.1038/nbt.3295
29. 29. i-Clamp phenoxazine for the fine tuning of DNA i-motif stability / V. Tsvetkov [et al.] // Nucleic Acids Research. 2018. Vol. 46 (5). P. 2751–2764. DOI: https://doi.org/10.1093/nar/gky121
30. 30. Identification of new DNA i-motif binding ligands through a fluorescent intercalator displacement assay / Q. Sheng [et al.] // Organic and Biomolecular Chemistry. 2017. Vol. 15 (27). P. 5669–5673. DOI: https://doi.org/10.1039/C7OB00710H
31. 31. Indole-3-carbinol induces tumor cell death: function follows form / B. Megna [et al.] // Journal of Surgical Research. 2016. Vol. 204 (1). P. 47–54. DOI: https://doi.org/10.1016/j.jss.2016.04.021
32. 32. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin / A. J. Bhattacharjee [et al.] // Biochimie. 2011. Vol. 93 (8). P. 1297–1309. DOI: https://doi.org/10.1016/j.biochi.2011.05.038
33. 33. Interactions of cryptolepine and neocryptolepine with unusual DNA structures / L. Guittat [et al.] // Biochimie. 2003. Vol. 85 (5). P. 535–547. DOI: https://doi.org/10.1016/S0300-9084(03)00035-X
34. 34. Investigation of the interactions between Pt(II) and Pd(II) derivatives of 5, 10, 15, 20-tetrakis (N-methyl-4-pyridyl) porphyrin and G-quadruplex DNA / N. C. Sabharwal [et al.] // Journal of Biological Inorganic Chemistry. 2016. Vol. 21 (2). P. 227–239. DOI: https://doi.org/10.1007/s00775-015-1325-8
35. 35. Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA / J.-H. Tan [et al.] // Journal of Medicinal Chemistry. 2009. Vol. 52 (9). P. 2825–2835. DOI: https://doi.org/10.1021/jm801600m
36. 36. Kang H.-J., Park H.-J. Novel molecular mechanism for actinomycin D activity as an oncogenic promoter G-quadruplex binder // Biochemistry. 2009. Vol. 48 (31). P. 7392–7398. DOI: https://doi.org/10.1021/bi9006836
37. 37. Licznerska B., Baer-Dubowska W. Indole-3-carbinol and its role in chronic diseases // Advances in experimental medicine and biology. 2016. Vol. 928. P. 131–154. DOI: https://doi.org/10.1007/978-3-319-41334-1_6
38. 38. Liu W., Sun D., Hurley L. H. Binding of G-quadruplex-interactive agents to distinct G-quadruplexes induces different biological effects in MiaPaCa cells // Nucleosides Nucleotides Nucleic Acids. 2005. Vol. 24 (10–12). P. 1801–1815. DOI: https://doi.org/10.1080/15257770500267238
39. 39. Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders / M. Tera [et al.] // Angewandte Chemie. 2008. Vol. 120 (30). P. 5639–5642. DOI: https://doi.org/10.1002/anie.200801235
40. 40. Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures / C. Lin [et al.] // Angewandte Chemie. 2018. Vol. 57(34). P. 10888–10893. DOI: https://doi.org/10.1002/anie.201804667
41. 41. NCT00780663. Quarfloxin in patients with low to intermediate grade neuroendocrine carcinoma / U. S. National Library of Medicine. URL: https://clinicaltrials.gov/ct2/show/NCT00780663
42. 42. NCT02719977. A phase I study of CX5461 / U. S. National Library of Medicine. URL: https://clinicaltrials.gov/ct2/show/NCT02719977
43. 43. O’Hagan M. P., Morales J. C., Galan M. C. Binding and beyond: what else can G-quadruplex ligands do? // European Journal of Organic Chemistry. 2019. Vol. 2019 (31–32). P. 4995–5017. DOI: https://doi.org/10.1002/ejoc.201900692
44. 44. Permanganate/s1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome / F. Kouzine [et al.] // Cell Systems. 2017. Vol. 4 (3). P. 344–356. e7. DOI: https://doi.org/10.1016/j.cels.2017.01.013
45. 45. Pharmacokinetic and pharmacodynamic studies with mitoxantrone in the treatment of patients with nasopharyngeal carcinoma / O. Y. Hu [et al.] // Cancer. 1992. Vol. 69 (4). P. 847–853. DOI: https://doi.org/10.1002/1097-0142(19920215)69:43.0.CO;2-L
46. 46. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19 / Z. Zhang [et al.] // Trends in Food Science & Technology. 2021. Vol. 114. P. 11–24. DOI: https://doi.org/10.1016/j.tifs.2021.05.023
47. 47. Pradeep T. P., Barthwal R. NMR structure of dual site binding of mitoxantrone dimer to opposite grooves of parallel stranded G-quadruplex [d-(TTGGGGT)]4 // Biochimie. 2016. Vol. 128–129. P. 59–69. DOI: https://doi.org/10.1016/j.biochi.2016.07.005
48. 48. Pyridine Derivative of the natural alkaloid berberine as human telomeric G4-DNA binder: a solution and solid-state study / F. Papi [et al.] // ACS Medicinal Chemistry Letters. 2020. Vol. 11 (5). P. 645–650. DOI: https://doi.org/10.1021/acsmedchemlett.9b00516
49. 49. QGRS-conserve: A computational method for discovering evolutionarily conserved G-quadruplex motifs / S. Frees [et al.] // Human Genomics. 2014. Vol. 8. P. 8. DOI: https://doi.org/10.1186/1479-7364-8-8
50. 50. Review on chemistry of natural and synthetic indolizines with their chemical and pharmacological properties / C. Sandeep [et al.] // Journal of Basic and Clinical Pharmacy. 2017. Vol. 8 (2). P. 49–60. URL: https://www.jbclinpharm.org/articles/review-onchemistry-of-natural-and-synthetic-indolizines-with-their-chemical-and-pharmacologicalproperties.html
51. 51. RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand / C. Jaubert [et al.] // Scientific Reports. 2018. Vol. 8 (1). P. 8120. DOI: https://doi.org/10.1038/s41598-019-43445-7
52. 52. Ruggiero E., Richter S. N. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy // Nucleic Acids Research. 2018. Vol. 46 (7). P. 3270–3283. DOI: https://doi.org/10.1093/nar/gky187
53. 53. Small molecule-induced DNA damage identifies alternative DNA structures in human genes / R. Rodriguez [et al.] // Nature Chemical Biology. 2012. Vol. 8 (3). P. 301–310. DOI: https://doi.org/10.1038/nchembio.780
54. 54. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics / B.-J. Chen [et al.] // International Journal of Biological Sciences. 2014. Vol. 10 (10). P. 1084–1096. DOI: https://doi.org/10.7150/ijbs.10190
55. 55. Spiegel J., Adhikari S., Balasubramanian S. The structure and function of DNA G-quadruplexes // Trends in Chemistry. 2020. Vol. 2 (2). P. 123–136. DOI: https://doi.org/10.1016/j.trechm.2019.07.002
56. 56. Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle / S. L. Cosconati [et al.] // Journal of the American Chemical Society. 2010. Vol. 132 (18). P. 6425–6433. DOI: https://doi.org/10.1021/ja1003872
57. 57. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4 / A. Martino [et al.] // Journal of the American Chemical Society. 2007. Vol. 129 (51). P. 16048–16056. DOI: https://doi.org/10.1021/ja075710k
58. 58. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations / S. Vinnarasi [et al.] // Journal of Biomolecular Structure and Dynamics. 2020. Vol. 38(2). P. 317–339. DOI: https://doi.org/10.1080/07391102.2019.1574239
59. 59. Study of the interaction between indole-based compounds and biologically relevant G-quadruplexes / J. Carvalho [et al.] // Biochimie. 2017. Vol. 135. P. 186–195. DOI: https://doi.org/10.1016/j.biochi.2017.02.005
60. 60. Synthesis and evaluation of fused bispyrimidinoacridines as novel pentacyclic analogues of quadruplex-binder BRACO-19 / J. Debray [et al.] // Organic and Biomolecular Chemistry. 2009. Vol. 7 (24). P. 5219–5228. DOI: https://doi.org/10.1039/B912716J
61. 61. Synthesis and G-quadruplex stabilizing properties of a series of oxazole-containing macrocycles / G. S. Minhas [et al.] // Bioorganic & Medicinal Chemistry Letters. 2006. Vol. 16 (15). P. 3891–3895. DOI: https://doi.org/10.1016/j.bmcl.2006.05.038
62. 62. Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole / M. Tera [et al.] // ChemBioChem. 2009. Vol. 10 (3). P. 431–435. DOI: https://doi.org/10.1002/cbic.200800563
63. 63. Synthesis of oligonucleotides containing novel G-clamp analogue with C8-tethered group in phenoxazine ring: Implication to qPCR detection of the low-copy Kemerovo virus dsRNA / A. Varizhuk [et al.] // Bioorganic & Medicinal Chemistry. 2017. Vol. 25 (14). P. 3597–3605. DOI: https://doi.org/10.1016/j.bmc.2017.03.062
64. 64. Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome / N. Shioda [et al.] // Nature Medicine. 2018. Vol. 24 (6). P. 802–813. DOI: https://doi.org/10.1038/s41591-018-0018-6
65. 65. The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons / J. F. Moruno-Manchon [et al.] // Aging (Albany NY). 2017. Vol. 9 (9). P. 1957–1970. DOI: https://doi.org/10.18632/aging.101282
66. 66. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells / D. Gomez [et al.] // Cancer Research. 2006. Vol. 66. P. 6908–6912. DOI: https://doi.org/10.1158/0008-5472.can-06-1581
67. 67. Topology specific stabilization of promoter over telomeric G-quadruplex DNAs by bisbenzimidazole carboxamide derivative / V. Dhamodharan [et al.] // ACS Chemical Biology. 2015. Vol. 10 (3). P. 821–833. DOI: https://doi.org/10.1021/cb5008597
68. 68. Wawrzyniak S, Rzepiński Ł. Is there a new place for mitoxantrone in the treatment of multiple sclerosis? // Neurologia i Neurochirurgia Polska. 2020. Vol. 54 (1). P. 54–61. DOI: https://doi.org/10.5603/pjnns.a2019.0069
69. 69. Zee-Cheng R. K. Y., Cheng C. C. Drugs of the Future. 1983. Vol. 8 (5). P. 228. URL: https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_toc_pr?p_JournalID=2&p_IssueID=158
Download file .pdf 1.52 Mb