Authors
- Stolyarova Angela Nikolaevna
- Yesaulenko Elena Evgenievna Doctor of Biological Sciences
- Shevchenko Alexey Stanislavovich
- Popov Konstantin Andreevich Candidate of Medical Sciences
Annotation
The search for pharmacological agents for the correction of ischemic reperfusion injury (IRP) to the liver can focus on the use of substances that have an energotropic
effect. Such agents in a broad sense include antioxidants, cofactors, substrates and regulators of energy metabolism. The aim of this study was to evaluate the cytoprotective efficacy of the independent or combined use of sodium dichloroacetate (DHA), lipoic acid and cocarboxylase in the condition of vascular liver excretion in rats. The study was performed on 7 groups of rats: 1) falsely operated animals without modeling liver ischemiareperfusion; 2) comparison group — IRP without correction; 3) IRP after administration of DHA solution; 4) IRP after administration of lipoic acid; 5) IRP after administration of cocarboxylase; 6) IRP after administration of DHA and lipoic acid; 7) IRP after administration of DHA and cocarboxylase. As a result of the experiments, it was revealed that preconditioning with the introduction of DHA was marked by the lowest level of markers of hepatocyte cytolysis in laboratory animals — 2.0–2.1 times lower than in animals with IRP without correction. Under similar conditions, the combined administration of cocarboxylase or lipoic acid to rats together with DHA was accompanied by reduced ALT and AST activity values by only 16–36 %. The use of DHA did not provide support for the functional state of the antioxidant system, however, it was accompanied by the accumulation of fewer lipoperoxidation products. Evaluation of the effectiveness of DHA together with cocarboxylase or lipoic acid did not reveal additional advantages of such a therapeutic strategy for liver protection when modeling IRP in rats.
How to link insert
Stolyarova, A. N., Yesaulenko, E. E., Shevchenko, A. S. & Popov, K. A. (2024). COMBINED ENERGOTROPIC CORRECTION OF PATHOBIOCHEMICAL DISORDERS DURING VASCULAR LIVER EXCLUSION IN THE EXPERIMENT Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", № 4 (56), 44. https://doi.org/10.24412/2076-9091-2024-456-44-56
References
1.
1. Danilenko L. M., Pokrovsky M. V., Tatarenkova I. A., Elagin V. V., Bratchikov O. I. Pharmacological preconditioning of resveratrol in ischemic/reherfusion injury: the role of nitric oxide. Kuban Scientific Medical Bulletin. 2015;155(6):35–38. (In Russ.).
2.
2. Karpishchenko A. I. Handbook. Medical Laboratory Technology. SPb.: Intermedika, 2002. 600 р. (In Russ.).
3.
3. Maslov L. N., Naryzhnaia N. V., Podoksenov Yu. K., Prokudina E. C., Gorbunov A. S., Zhang I., Pei J. M. Reactive oxygen species are triggers and mediators of an increase in cardiac tolerance to impact of ischemia-reperfusion. Russ. J. Physiol. 2015;101(1):3–24. (In Russ.).
4.
4. Popov K. A., Denisova Ya. E., Stolyarova A. N., Azimov E. A., Esaulenko Е. Е., Bykov M. I., Balachevskaya O. V., Basov А. А. Dynamics of changes in oxidative homeostasis parameters during rat liver reperfusion after vascular exclusion. Crimea Journal of Experimental and Clinical Medicine. 2021;11(2):40–45. (In Russ.). https://doi.org/10.37279/2224-6444-2021-11-2-40-46
5.
5. Popov K. A., Denisova Y. E., Bykov I. M., Tsymbalyuk I. Y., Ermakova G. A., Zavgorodnyaya A. G., Shevchenko A. S. The Role of the Pyruvate Dehydrogenase Complex in the Development of Ischemic-Reperfusion Syndrome. Kuban Scientific Medical Bulletin. 2022;29(4):75–93. (In Russ.). https://doi.org/10.25207/1608-6228-2022-29-4-75-93
6.
6. Patobiochemistry of liver ischemia-reperfusion injury: Monograph / edited by К. А. Popov, I. М. Bykov. Krasnodar: Kachestvo, 2023. 212 p. (In Russ.).
7.
7. Khodosovsky M. N. Correction of oxidative damages during hepatic ischemiareperfusion syndrome. Journal GrSMU. 2016;(4):20–25. (In Russ.).
8.
8. Тsymbalyuk I. Y., Manuilov A. M., Popov K. A., Basov A. A. Мetabolic correction of the ischemia-reperfusive injury with sodium dichloroacetate in vascular isolation of the liver in experiment. Novosti Khirurgii. 2017;25(5):447–453. (In Russ.). https://doi.org/10.18484/2305-0047.2017.5.447
9.
9. Altuner D., Cetin N., Suleyman B., Aslan Z., Hacimuftuoglu A., Gulaboglu M., Isaoglu N., Demiryilmaz I., Suleyman H. Effect of thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat kidney // Indian J Pharmacol. 2013;45(4):339–343. https://doi.org/10.4103/0253-7613.115005
10.
10. Ding Y., Zhang Y., Zhang W., Shang J., Xie Z., Chen C. Effects of Lipoic Acid on Ischemia-Reperfusion In-jury. Oxid. Med. Cell. Longev. 2021. P. 5093216. https://doi.org/10.1155/2021/5093216
11.
11. Farag M. M., Ahmed S. M., Elhadidy W. F., Rashad R. M. Superior protective effects of febuxostat plus alpha-lipoic acid on renal ischemia/reperfusion-induced hepatorenal injury in rats. Saudi J Kidney Dis Transpl. 2019;30(6):1364–1374. https://doi.org/10.4103/1319-2442.275480
12.
12. Lee E. J., Hwang H. J., Ko J. S., Park M. Effects of Extracellular Calcium Concentration on Hepatic Ischemia-Reperfusion Injury in a Rat Model. Exp Clin Transplant. 2024;22(2):120–128. https://doi.org/10.6002/ect.2023.0307
13.
13. Ren Y., Wang L. H., Deng F. S., Li J. S., Jiang L. Protective effect and mechanism of alpha-lipoic acid on partial hepatic ischemia-reperfusion injury in adult male rats. Physiol Res. 2019;68(5):739–745. https://doi.org/10.33549/physiolres.934095
14.
14. Yilmaz A. H., Dogan U., Özgül H., Uzmay Y., Ellidag H. Y., Yildirim S., Aslaner A. Effect of ischemia-reperfusion injury on elafin levels in rat liver. Ulus Travma Acil Cerrahi Derg. 2024;30(2):80–89. https://doi.org/10.14744/tjtes.2024.32728
15.
15. Zhang M., Liu Q., Meng H., Duan H., Liu X., Wu J., Gao F., Wang S., Tan R., Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2024;9(1):12. https://doi.org/10.1038/s41392-023-01688-x
16.
16. Zhao X., Li S., Mo Y., Li R., Huang S., Zhang A., Ni X., Dai Q., Wang J.DCA Protects against Oxidation Injury Attributed to Cerebral Ischemia-Reperfusion by Regulating Glycolysis through PDK2-PDH-Nrf2 Axis. Oxidative Medicine and Cellular Longevity. 2021;11:1–12. https://doi.org/10.1155/2021/5173035
17.
17. Zhu C., Wang Y., Li Y., Wang T., Ye F., Su W., Chen T., Zhang C., Xiong L. Discovery of neuroprotective Agents: Potent, brain Penetrating, lipoic acid derivatives for the potential treatment of ischemic stroke by regulating oxidative stress and inflammation — a Preliminary study. Bioorg Chem. 2024;147:107339. https://doi.org/10.1016/j.bioorg.2024.107339