Главная Выпуски 2021, №4 (44)

Природные и синтетические лиганды к G-квадруплексам

Биологические науки , УДК: 577.1 DOI: 10.25688/2076-9091.2021.44.4.2

Авторы

  • Лизунова Софья Александровна
  • Ведехина Татьяна Сергеевна кандидат химических наук, кандидат химических наук
  • Варижук Анна Михайловна ведущий научный сотрудник, доктор химических наук

Аннотация

G-квадруплекс (G4) представляет собой известную вторичную структуру нуклеиновой кислоты, содержащую богатые гуанином последовательности. Такие структуры – значимый объект в молекулярной биологии и биохимии, ввиду их связи с развитием онкологических заболеваний. Они представляют интерес в фармакологии как мишени терапевтических агентов (лигандов). На сегодняшний день в ряде лабораторий разработано большое количество G4-лигандов ДНК/РНК. Применению G4-лигандов в медицинской̆ практике препятствуют, главным образом, их низкая селективность и токсичность. Такая низкая селективность может вызвать неожиданные эффекты, которые обычно являются причиной остановки процесса разработки лекарств. Этот обзор направлен на недавние исследования природных и синтетических лигандов, взаимодействующих с квадруплексами. В числе G4-направленных терапевтических агентов рассмотрены макроциклические соединения (производные теломестатина и порфирины), природные конденсированные гетероциклические соединения (индолы, индолизины, берберины, флавоноиды и феноксазины) и их синтетические производные (акридины, хиназолоны и хинолины, фенантролины и антрахиноны), модульные лиганды и металлокомплексы.

Как ссылаться

Лизунова, С. А., Ведехина, Т. С. & Варижук, А. М. (2021). Природные и синтетические лиганды к G-квадруплексам Вестник МГПУ «Естественные науки», 2021, №4 (44), 16-41. https://doi.org/10.25688/2076-9091.2021.44.4.2
Список литературы
1. 1,4- and 2,6-Disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase / P.J. Perry [et al.] // Journal of Medicinal Chemistry. – 1998. – Vol. 41(17). – P. 3253-3260. DOI: https://doi.org/10.1021/jm9801105
2. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells / N. Nagesh [et al.] // Biochimica et Biophysica Acta (BBA) – General Subjects. – 2015. – Vol. 1850(1). – P. 129–140. DOI: https://doi.org/10.1016/j.bbagen.2014.10.004
3. A small molecule that represses translation of G-quadruplex-containing mRNA / Y. Katsuda [et al.] // Journal of the American Chemical Society. – 2016. – Vol. 138(29). – P. 9037–9040. DOI: https://doi.org/10.1021/jacs.6b04506
4. Adaptive and specific recognition of telomeric G-quadruplexes via polyvalency induced unstacking of binding units / J. Abraham Punnoose [et al.] // Journal of the American Chemical Society. – 2017. – Vol. 139(22). – P. 7476–7484. DOI: https://doi.org/10.1021/jacs.7b00607
5. An overview of quadruplex ligands: their common features and chemotype diversity / V. Pirota [et al.] // Annual Reports in Medicinal Chemistry. – 2020. – Vol. 54. – P. 163–169. DOI: https://doi.org/10.1016/bs.armc.2020.04.008
6. Anthracene 9,10-diones as potential anticancer agents. Synthesis, DNA-binding, and biological studies on a series of 2,6-disubstituted derivatives / M. Agbandje [et al.] // Journal of Medicinal Chemistry. – 1992. – Vol. 35(8). – P. 1418-1429. DOI: https://doi.org/10.1021/jm00086a010
7. Anticancer activity of novel pyrido[2,3-b]indolizine derivatives: the relevance of phenolic substituents / A. Boot [et al.] // Anticancer Research. – 2014. – Vol. 34(4). – P. 1673-1677. URL: https://ar.iiarjournals.org/content/34/4/1673
8. Berberine, an epiphany against cancer / L.M. Guamán Ortiz [et al.] // Molecules. – 2014. Vol. 19. – P. 12349–12367. DOI: https://doi.org/10.3390/molecules190812349
9. Brooks T.A., Hurley L.H. Targeting MYC expression through G-quadruplexes // Genes & Cancer. – 2010. – Vol. 1(6). – P. 641–649. DOI: https://doi.org/10.1177/1947601910377493
10. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours / H. Xu [et al.] // Nature Communications. – 2017. – Vol. 8. – Art. 14432. DOI: https://doi.org/10.1038/ncomms14432
11. Data on secondary structures and ligand interactions of G-rich oligonucleotides that defy the classical formula for G4 motifs / M. Vlasenok [et al.] // Data in Brief. – 2017. – Vol. 11. – P. 258–265. DOI: https://doi.org/10.1016/j.dib.2017.02.023
12. David A.V.A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid // Pharmacognosy Reviews. – 2016. – Vol. 10(20). – P. 84–89. DOI: http://dx.doi.org/10.4103/0973-7847.194044
13. Design of Modular G-quadruplex Ligands / A.R. Duarte [et al.] // ChemMedChem. – 2018. – Vol. 13(9). – P. 869–893. DOI: https://doi.org/10.1002/cmdc.201700747
14. Design, synthesis, and evaluation of isaindigotone derivatives to downregulate c-MYC transcription via disrupting the interaction of NM23-H2 with G-quadruplex / C. Shan [et al.] // Journal of Medicinal Chemistry. – 2017. – Vol. 60(4). – P. 1292–1308. DOI: https://doi.org/10.1021/acs.jmedchem.6b01218
15. Dolinnaya N.G., Ogloblina A.M., Yakubovskaya M.G. Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: Overview 50 years after their discovery // Biochemistry (Moscow). – 2016. – Vol. 81(13). – P. 1602–1649. DOI: http://dx.doi.org/10.1134/S0006297916130034
16. Dual recognition of human telomeric G-quadruplex by neomycin-anthraquinone conjugate / N. Ranjan [et al.] // Chemical Communications. – 2013. – Vol. 49(51). – P. 5796–5798. DOI: https://doi.org/10.1039/C3CC42721H
17. Dunn C.J., Goa K.L. Mitoxantrone: a review of its pharmacological properties and use in acutenonlymphoblastic leukaemia // Drugs & Aging. – 1996. – Vol. 9 (2). – P. 122–147. DOI: https://doi.org/10.2165/00002512-199609020-00007
18. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells / E. Izbicka [et al.] // Cancer Research. – 1999. – Vol. 59(3). – P. 639–644. URL: https://cancerres.aacrjournals.org/content/canres/59/3/639.full.pdf
19. Evaluation of the interaction between long telomeric DNA and macrocyclic hexaoxazole (6OTD) dimer of a G-quadruplex ligand / K. Iida [et al.] // Molecules. – 2013. – Vol. 18(4). – P. 4328–4341. DOI: https://doi.org/10.3390/molecules18044328
20. Genistein – a supplement improving efficiency of the human body: A review / K. Leis [et al.] // Science & Sports. – 2021. – Vol. 36 (5). P. 359–367. DOI: https://doi.org/10.1016/j.scispo.2020.08.005
21. Genistein and cancer: current status, challenges, and future directions / C. Spagnuolo [et al.] // Advances in Nutrition. – 2015. – Vol. 6(4). – P. 408–419. DOI: https://doi.org/10.3945/an.114.008052
22. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species / A. Verma [et al.] // Journal of Medicinal Chemistry. – 2008. – Vol. 51(18). – P. 5641–5649. DOI: https://doi.org/10.1021/jm800448a
23. Golub E., Lu C.H., Willner I. Metalloporphyrin/G-quadruplexes: from basic properties to practical // Journal of Porphyrins and Phthalocyanines. – 2015. – Vol. 19(1-3). – P. 65–91. DOI: https://doi.org/10.1142/S1088424615300025
24. G-quadruplex binding ligands: from naturally occurring to rationally designed molecules / T. Vy Thi Le [et al.] // Current Pharmaceutical Design. – 2012. – Vol. 18(14). – P. 1948–1972. DOI: https://doi.org/10.2174/138161212799958431
25. G-quadruplex DNA bound by a synthetic ligand is highly dynamic / P.V. Jena [et al.] // Journal of the American Chemical Society. – 2009. – Vol. 131(35). – P. 12522–12523. DOI: https://doi.org/10.1021/ja903408r
26. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs / Q. Cao [et al.] // Inorganic Chemistry Frontiers. – 2017. – Vol. 4(1). – P. 10–32. DOI: https://doi.org/10.1039/C6QI00300A
27. Highly efficient G-quadruplex recognition by bisquinolinium compounds / A. De Cian [et al.] // Journal of the American Chemical Society. – 2007. – Vol. 129(7). – P. 1856–1857. DOI: https://doi.org/10.1021/ja067352b
28. High-throughput sequencing of DNA G-quadruplex structures in the human genome / V.S. Chambers [et al.] // Nature Biotechnology. – 2015. – Vol. 33(8). – P. 877–881. DOI: https://doi.org/10.1038/nbt.3295
29. i-Clamp phenoxazine for the fine tuning of DNA i-motif stability / V. Tsvetkov [et al.] // Nucleic Acids Research. – 2018. – Vol. 46(5). – P. 2751-2764. DOI: https://doi.org/10.1093/nar/gky121
30. Identification of new DNA i-motif binding ligands through a fluorescent intercalator displacement assay / Q. Sheng [et al.] // Organic and Biomolecular Chemistry. – 2017. – Vol. 15(27). – P. 5669–5673. DOI: https://doi.org/10.1039/C7OB00710H
31. Indole-3-carbinol induces tumor cell death: function follows form / B. Megna [et al.] // Journal of Surgical Research. – 2016. – Vol. 204(1). – P. 47–54. DOI: https://doi.org/10.1016/j.jss.2016.04.021
32. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin / A.J. Bhattacharjee [et al.] // Biochimie. – 2011. – Vol. 93(8). – P. 1297–1309. DOI: https://doi.org/10.1016/j.biochi.2011.05.038
33. Interactions of cryptolepine and neocryptolepine with unusual DNA structures / L. Guittat [et al.] // Biochimie. – 2003. – Vol. 85(5). – P. 535–547. DOI: https://doi.org/10.1016/S0300-9084(03)00035-X
34. Investigation of the interactions between Pt(II) and Pd(II) derivatives of 5,10,15,20-tetrakis (N-methyl-4-pyridyl) porphyrin and G-quadruplex DNA / N.C. Sabharwal [et al.] // Journal of Biological Inorganic Chemistry. – 2016. – Vol. 21(2). – P. 227–239. DOI: https://doi.org/10.1007/s00775-015-1325-8
35. Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA / J.-H. Tan [et al.] // Journal of Medicinal Chemistry. – 2009. – Vol. 52(9). – P. 2825–2835. DOI: https://doi.org/10.1021/jm801600m
36. Kang H.-J., Park H.-J. Novel molecular mechanism for actinomycin D activity as an oncogenic promoter G-quadruplex binder // Biochemistry. – 2009. – Vol. 48(31). – P. 7392–7398. DOI: https://doi.org/10.1021/bi9006836
37. Licznerska B., Baer-Dubowska W. Indole-3-carbinol and its role in chronic diseases // Advances in experimental medicine and biology. – 2016. – Vol. 928. – P. 131–154. DOI: https://doi.org/10.1007/978-3-319-41334-1_6
38. Liu W., Sun D., Hurley L.H. Binding of G-quadruplex-interactive agents to distinct G-quadruplexes induces different biological effects in MiaPaCa cells // Nucleosides Nucleotides Nucleic Acids. – 2005. – Vol. 24(10–12). – P. 1801–1815. DOI: https://doi.org/10.1080/15257770500267238
39. Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders / M. Tera [et al.] // Angewandte Chemie. – 2008. – Vol. 120(30). – P. 5639–5642. DOI: https://doi.org/10.1002/anie.200801235
40. Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures / C. Lin [et al.] // Angewandte Chemie. – 2018. – Vol. 57(34). – P. 10888–10893. DOI: https://doi.org/10.1002/anie.201804667
41. NCT00780663. Quarfloxin in patients with low to intermediate grade neuroendocrine carcinoma / U.S. National Library of Medicine. URL: https://clinicaltrials.gov/ct2/show/NCT00780663
42. NCT02719977. A phase I study of CX5461 / U.S. National Library of Medicine. URL: https://clinicaltrials.gov/ct2/show/NCT02719977
43. O’Hagan M.P., Morales J.C., Galan M.C. Binding and beyond: what else can G-quadruplex ligands do? // European Journal of Organic Chemistry. – 2019. – Vol. 2019(31–32). – P. 4995–5017. DOI: https://doi.org/10.1002/ejoc.201900692
44. Permanganate/s1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome / F. Kouzine [et al.] // Cell Systems. – 2017. – Vol. 4(3). – P. 344–356.e7. DOI: https://doi.org/10.1016/j.cels.2017.01.013
45. Pharmacokinetic and pharmacodynamic studies with mitoxantrone in the treatment of patients with nasopharyngeal carcinoma / O.Y. Hu [et al.] // Cancer. – 1992. – Vol. 69(4). – P. 847-853. DOI: https://doi.org/10.1002/1097-0142(19920215)69:43.0.CO;2-L
46. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19 / Z. Zhang [et al.] // Trends in Food Science & Technology. – 2021. – Vol. 114. – P. 11–24. DOI: https://doi.org/10.1016/j.tifs.2021.05.023
47. Pradeep T.P., Barthwal R. NMR structure of dual site binding of mitoxantrone dimer to opposite grooves of parallel stranded G-quadruplex [d-(TTGGGGT)]4 // Biochimie. – 2016. – Vol. 128–129. – P. 59–69. DOI: https://doi.org/10.1016/j.biochi.2016.07.005
48. Pyridine Derivative of the natural alkaloid berberine as human telomeric G4-DNA binder: a solution and solid-state study / F. Papi [et al.] // ACS Medicinal Chemistry Letters. – 2020. – Vol. 11(5). – P. 645–650. DOI: https://doi.org/10.1021/acsmedchemlett.9b00516
49. QGRS-conserve: A computational method for discovering evolutionarily conserved G-quadruplex motifs / S. Frees [et al.] // Human Genomics. – 2014. – Vol. 8. – P. 8. DOI: https://doi.org/10.1186/1479-7364-8-8
50. Review on chemistry of natural and synthetic indolizines with their chemical and pharmacological properties / C. Sandeep [et al.] // Journal of Basic and Clinical Pharmacy. – 2017. – Vol. 8(2). – P. 49–60. URL: https://www.jbclinpharm.org/articles/review-on-chemistry-of-natural-and-synthetic-indolizines-with-their-chemical-and-pharmacological-properties.html
51. RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand / C. Jaubert [et al.] // Scientific Reports. – 2018. – Vol .8 (1). – P. 8120. DOI: https://doi.org/10.1038/s41598-019-43445-7
52. Ruggiero E., Richter S.N. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy // Nucleic Acids Research. – 2018. – Vol. 46(7). – P. 3270–3283. DOI: https://doi.org/10.1093/nar/gky187
53. Small molecule-induced DNA damage identifies alternative DNA structures in human genes / R. Rodriguez [et al.] // Nature Chemical Biology. – 2012. – Vol. 8(3). – P. 301–310. DOI: https://doi.org/10.1038/nchembio.780
54. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics / B.-J. Chen [et al.] // International Journal of Biological Sciences. – 2014. – Vol. 10(10). – P. 1084–1096. DOI: https://doi.org/10.7150/ijbs.10190
55. Spiegel J., Adhikari S., Balasubramanian S. The structure and function of DNA G-quadruplexes // Trends in Chemistry. – 2020. – Vol. 2(2). – P. 123–136. DOI: https://doi.org/10.1016/j.trechm.2019.07.002
56. Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle / S.L. Cosconati [et al.] // Journal of the American Chemical Society. – 2010. – Vol. 132(18). – P. 6425–6433. DOI: https://doi.org/10.1021/ja1003872
57. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4 / A. Martino [et al.] // Journal of the American Chemical Society. – 2007. – Vol. 129(51). – P. 16048–16056. DOI: https://doi.org/10.1021/ja075710k
58. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations / S. Vinnarasi [et al.] // Journal of Biomolecular Structure and Dynamics. – 2020. – Vol. 38(2). – P. 317–339. DOI: https://doi.org/10.1080/07391102.2019.1574239
59. Study of the interaction between indole-based compounds and biologically relevant G-quadruplexes / J. Carvalho [et al.] // Biochimie. – 2017. – Vol. 135. – P. 186–195. DOI: https://doi.org/10.1016/j.biochi.2017.02.005
60. Synthesis and evaluation of fused bispyrimidinoacridines as novel pentacyclic analogues of quadruplex-binder BRACO-19 / J. Debray [et al.] // Organic and Biomolecular Chemistry. – 2009. – Vol. 7(24). – P. 5219–5228. DOI: https://doi.org/10.1039/B912716J
61. Synthesis and G-quadruplex stabilizing properties of a series of oxazole-containing macrocycles / G.S. Minhas [et al.] // Bioorganic & Medicinal Chemistry Letters. – 2006. – Vol. 16(15). – P. 3891–3895. DOI: https://doi.org/10.1016/j.bmcl.2006.05.038
62. Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole / M. Tera [et al.] // ChemBioChem. – 2009. – Vol. 10(3). – P. 431–435. DOI: https://doi.org/10.1002/cbic.200800563
63. Synthesis of oligonucleotides containing novel G-clamp analogue with C8-tethered group in phenoxazine ring: Implication to qPCR detection of the low-copy Kemerovo virus dsRNA / A. Varizhuk [et al.] // Bioorganic & Medicinal Chemistry. – 2017. – Vol. 25(14). – P. 3597–3605. DOI: https://doi.org/10.1016/j.bmc.2017.03.062
64. Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome / N. Shioda [et al.] // Nature Medicine. – 2018. – Vol. 24(6). – P. 802–813. DOI: https://doi.org/10.1038/s41591-018-0018-6
65. The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons / J.F. Moruno-Manchon [et al.] // Aging (Albany NY). – 2017. – Vol. 9(9). – P. 1957–1970. DOI: https://doi.org/10.18632/aging.101282
66. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells / D. Gomez [et al.] // Cancer Research. – 2006. – Vol. 66. – P. 6908–6912. DOI: https://doi.org/10.1158/0008-5472.can-06-1581
67. Topology specific stabilization of promoter over telomeric G-quadruplex DNAs by bisbenzimidazole carboxamide derivative / V. Dhamodharan [et al.] // ACS Chemical Biology. – 2015. – Vol. 10(3). – P. 821–833. DOI: https://doi.org/10.1021/cb5008597
68. Wawrzyniak S, Rzepiński Ł. Is there a new place for mitoxantrone in the treatment of multiple sclerosis? // Neurologia i Neurochirurgia Polska. – 2020. – Vol. 54(1). – P. 54–61. DOI: https://doi.org/10.5603/pjnns.a2019.0069 Zee-Cheng R.K.Y., Cheng C.C. // Drugs of the Future. – 1983. – Vol. 8(5). – P. 228. URL: https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_toc_pr?p_JournalID=2&p_IssueID=158